

- A model of banking.
- Financial instability (bank runs).
- Maturity mismatch: long-term assets vs short-term liabilities.
- Justifies deposit insurance schemes.
- 2022 Nobel Prize (with Ben Bernanke).

III. Niklas Elmehed © Nobel Prize Outreach

Douglas W. Diamond

III. Niklas Elmehed © Nobel Prize Outreach

Philip H. Dybvig Prize share: 1/3

Assumptions

- One-good economy with a continuum of agents.
- Three periods (0, 1 and 2).
- Each agent endowed with 1 good in period 0.
- ▶ If 1 good invested until period 2, yields *R* > 1 goods.
- Two types of agents
 - o Type-a: values only consumption in period 1
 - o Type-b: values consumption in both periods
- Share of type-a = θ
- Individual learns its type in period 1, but not visible to others.

Utility functions

Utility of a type-a individual:

$$U^a = \ln c_1^a$$

Utility of a type-b individual:

$$U^b=
ho\ln(c_1^b+c_2^b)$$

where $0 < \rho < 1$ and $\rho R > 1$.

Benchmark case 1: Autarchy

Agents cannot trade, each just manages her own wealth.

- Optimal choice of type-a agents:
 - o Consume 1 in period 1.
 - o Consume 0 in period 2.
- Optimal choice of type-b agents:
 - o Consume 0 in period 1.
 - o Consume R in period 2.
- Ex-ante expected utility (computed at period 0):

$$egin{aligned} & \mathcal{E}(U^{AUTARCHY}) = heta \ln 1 + (1 - heta)
ho \ln R \ & = (1 - heta)
ho \ln R \end{aligned}$$

Type-b gets more consumption than type-a.

Benchmark case 2: Social planner

- Social planner maximizes individual's ex-ante expected utility.
- Will obviously set $c_2^a = 0$ and $c_1^b = 0$.
- Share of total endowments liquidated early: θc_1^a .
- Share of total endowments kept invested: $1 \theta c_1^a$.
- So, the social planner problem is:

$$\max_{\substack{c_1^a,c_2^b}} E(U) = \theta \ln c_1^a + (1-\theta)\rho \ln c_2^b$$
(1)
s.t. $(1-\theta)c_2^b = (1-\theta c_1^a)R$ (2)

Socially-optimal allocation

Substituting the resource constraint into expected utility:

$$\max_{c_1^a} E(U) = \theta \ln c_1^a + (1-\theta) \rho \Big[\ln \Big(1 - \theta c_2^a \Big) + \ln R - \ln (1-\theta) \Big]$$

Solution:

$$c_1^{a\star} = \frac{1}{\theta + (1 - \theta)\rho} > 1$$
$$c_2^{b\star} = \frac{\rho R}{\theta + (1 - \theta)\rho} < R$$

- c_1^a higher than in autarchy case, c_2^b lower.
- Social planner transfers some resources in favor of type-a.
- ▶ Reason: type-a likes consumption more ($\rho < 1$).
- But still $c_2^{\star b} > c_1^{\star a}$.

Case 3: A bank

- At time 0, individuals deposit their endowments in the bank.
- Can withdraw $c_1^{a\star} > 1$ at period 1.
- Funds that are not withdrawn are invested by the bank.
- All returns are divided up between remaining depositors in period 2:

 $c_2 = rac{1-\phi c_1^{\star a}}{1-\phi}$, where ϕ is the share of agents withdrawing early

- So the return from holding until maturity depends (negatively) on the share that withdraws early.
- If bank cannot meet all period 1 withdrawals, it gives c₁^{a*} to some and 0 to the rest.

The choice to withdraw or hold

- Will depositors withdraw or hold?
- Type-a will always want to withdraw in period 1.
- ► Type-b will hold if she expects $c_2 > c_1^{a*}$.
- So a type-b agent will hold if the following is expected to be true

$$c_2 = \frac{1-\phi c_1^{\star a}}{1-\phi} > c_1^{\star a}$$

- This holds if ϕ is not too high.
- Type-b agent will hold if they expect enough other people to hold too.

The 'good' equilibrium

- The following is an equilibrium outcome:
 Type-a individuals withdraw and all get c^{a*}
 Type-b individuals hold and receive c₂ = 1-θc₁/(1-θ)R = c₂^{b*}.
- Nash Equilibrium: If type-b expects $\phi = \theta$, best response is holding.

o because $c_2^{b\star} > c_1^{a\star}$.

The 'good' equilibrium

- The following is an equilibrium outcome:
 Type-a individuals withdraw and all get c^{a*}
 - o Type-b individuals hold and receive $c_2 = \frac{1-\theta c_1^a}{1-\theta} R = c_2^{b\star}$.
- ▶ Nash Equilibrium: If type-b expects $\phi = \theta$, best response is holding.
 - o because $c_2^{b\star} > c_1^{a\star}$.
- The bank can realize the social optimum (maximize the expected utility of a representative agent).
- Basically, bank provides insurance against the possibility that you might end up being type-a.

The 'bank run' equilibrium

- However, also the following is an equilibrium:
 - o Everybody tries to withdraw
 - o Since $c_1^{a*} > 1$, bank cannot meet all withdrawals.
- Nash equilibrium: if you expect everybody else to try to withdraw, you are better off trying to withdraw too.
 - with ϕ close to one, c_2 is close to zero.

The 'bank run' equilibrium

- However, also the following is an equilibrium:
 - o Everybody tries to withdraw
 - o Since $c_1^{a\star} > 1$, bank cannot meet all withdrawals.
- Nash equilibrium: if you expect everybody else to try to withdraw, you are better off trying to withdraw too.
 - with ϕ close to one, c_2 is close to zero.
- Bank run can be a self-fulfilling prophecy: the expectation that everyone will withdraw causes everyone to withdraw.
- Many examples in history (recently Northern Rock 2007, Silicon Valley Bank 2023)

- Liquidity mismatch is the source of the problem: the bank uses short-term borrowing to finance long-term investment.
- A bank run can happen even if the bank does nothing wrong, just because of self-fulfilling expectations.
- Some possible solutions to eliminate the bad equilibrium:
 - 1. Suspension of payments: bank pays c_1^{a*} to a maximum of θ agents, the others are forced to wait.
 - 2. Deposit insurance: If bank doesn't have enough funds to pay c_2^{b*} , government will pay them (financed by taxes on type-a agents).
 - 3. Lender of last resort: CB lends resources to the bank in case $\phi > \theta$, so the bank can pay all depositors and keep a share θ of its investments, which will be used to repay depositors who hold and the CB loan.