

 OQ

Macroeconomic Theory I

Section 3 - Growth (II): Ideas, history, geography and institutions

4 D F

Daniele Girardi King's College London

AY 2023-24, Semester I

Section 3 - Growth (II): The Plan

- 1. Endogenous Growth Theory: key ideas.
- 2. EG with a fixed saving rate and share of R&D.
- 3. Learning-by-doing: The AK model
- 4. The Romer (1990) model: endogenous R&D investment.
- 5. Fundamental determinants of growth

New growth theory: Key ideas

… Production function for innovation

 $A(t) = f(A(t), x(t))$

- *x* = some measure of R&D efforts.
- **…** *A* is *non-rival* but potentially *excludable*
- **…** Growth *as a result of market-based incentives* requires that innovators enjoy market power.

Determinants of innovation

- 1. Public support for basic research.
- 2. Private incentives for R&D investment
	- o requires some excludability
	- o rate of return on R&D.
- 3. Alternative opportunities for talented individuals o Baumol (1990); Murphy, Shleifer & Vishny (1991)
- 4. Learning-by-doing
	- o Innovation as a side-effect of economic activity
	- o AK models

- **…** 2 sectors: goods production and R&D
- **…** No capital
- **…** Fixed share of resources allocated to each sector

- **…** 2 sectors: goods production and R&D
- **…** No capital
- **…** Fixed share of resources allocated to each sector

 $Y(t) = A(t)(1 - a_L)L(t);$ $\dot{A}(t) = B[a_L L(t)]^{\gamma} A(t)^{\theta};$ $\dot{L}(t) = nL(t)$

- **…** 2 sectors: goods production and R&D
- **…** No capital
- **…** Fixed share of resources allocated to each sector

$$
Y(t) = A(t)(1-a_L)L(t); \quad \dot{A}(t) = B[a_L L(t)]^{\gamma}A(t)^{\theta}; \quad \dot{L}(t) = nL(t)
$$

Model dynamics:

$$
g_A = Ba_L^{\gamma}L(t)^{\gamma}A(t)^{\theta-1}
$$

$$
\dot{g}_A(t) = \gamma n g_A(t) + (\theta - 1)[g_A(t)]^2
$$

- **…** 2 sectors: goods production and R&D
- **…** No capital
- **…** Fixed share of resources allocated to each sector

$$
Y(t) = A(t)(1-a_L)L(t); \quad \dot{A}(t) = B[a_L L(t)]^{\gamma}A(t)^{\theta}; \quad \dot{L}(t) = nL(t)
$$

Model dynamics:

$$
g_A = Ba_L^{\gamma}L(t)^{\gamma}A(t)^{\theta-1}
$$

$$
\dot{g}_A(t) = \gamma n g_A(t) + (\theta - 1)[g_A(t)]^2
$$

 \blacktriangleright Value of θ determines the behavior of this model.

$\dot{g}_A(t) = \gamma n g_A(t) + (\theta - 1)[g_A(t)]^2$ Case (1): decreasing returns to A (θ < 1)

 $\dot{q}_A(t) = \gamma n q_A(t) + (\theta - 1)[q_A(t)]^2$ Case (1): decreasing returns to A $(\theta < 1)$

… stable equilibrium

$$
\blacktriangleright g_A^* = \frac{\gamma}{1-\theta} n;
$$

- ► no growth effect of *a*_L and *L*;
- **…** *gY/L* depends (positively) on population growth;
- **…** *semi-endogenous growth*.

$\dot{g}_A(t) = \gamma n g_A(t) + (\theta - 1)[g_A(t)]^2$ Case (2): increasing returns to A $(\theta > 1)$

[D.Girardi,](#page-0-0) AY 2023-24 8

 $\dot{g}_A(t) = \gamma n g_A(t) + (\theta - 1)[g_A(t)]^2$ Case (2): increasing returns to A $(\theta > 1)$

Case (3): constant returns to A ($\theta = 1$)

 $g_A(t) = Ba_L^{\gamma}L(t)^{\gamma}$ $\dot{g_A}(t) = \gamma n g_A(t)$

- **…** if *n >* 0, *gA* is ever-increasing ('explosive' growth);
- \blacktriangleright If $n = 0$, q_A fixed.
	- **…** no transitions, always in equilibrium
	- ► fully endogenous growth: growth depends on *a*_L
	- **…** example of a *linear growth model* (*A*˙ linear in A)

Learning-by-doing: The AK model

Assumptions:

 $Y(t) = K(t)^\alpha [A(t)L(t)]^{1-\alpha};$ $A(t) = BK(t);$

 $K(t) = SY(t);$ $L(t) = \bar{L}$. *Kenneth Arrow*

Learning-by-doing: The AK model

Assumptions:

- $Y(t) = K(t)^\alpha [A(t)L(t)]^{1-\alpha};$ $A(t) = BK(t);$
- $K(t) = SY(t);$ $L(t) = \bar{L}$. *Kenneth Arrow*

$$
\sqrt{2}
$$

Dynamics of the model:

 $Y(t) = bK(t)$ with $b = (B\bar{L})^{1-\alpha}$

Learning-by-doing: The AK model

Assumptions:

- $Y(t) = K(t)^\alpha [A(t)L(t)]^{1-\alpha};$ $A(t) = BK(t);$
- $K(t) = SY(t);$ $L(t) = \bar{L}$. *Kenneth Arrow*

Dynamics of the model:

$$
Y(t) = bK(t) \quad \text{ with } b = (B\overline{L})^{1-\alpha}
$$

$$
\dot{K}(t) = sbK(t) \Rightarrow g_k = sb
$$

PS: where have you seen $Y = bK$ *and* $q_k = sb$ *before??*

EGT and the *linearity* assumption

- **…** *AK model* \circ A=BK \Rightarrow *q_Y* depends on *s*.
- \blacktriangleright *EG model with fixed R&D share and* $\theta = 1$ α $\dot{A} = [B(a_L L)^{\gamma}]A \Rightarrow g_{\gamma}$ depends on a_L and *L*.
- **…** *Romer (1990)* is also a *linear* growth model α $\dot{A} = (DL_A)A \implies q_Y$ depends on *L*.

EGT and the *linearity* assumption

- **…** *AK model* \circ A=BK \Rightarrow *q_Y* depends on *s*.
- \blacktriangleright *EG model with fixed R&D share and* $\theta = 1$ α $\dot{A} = [B(a_L L)^{\gamma}]A \Rightarrow g_{\gamma}$ depends on a_L and *L*.
- **…** *Romer (1990)* is also a *linear* growth model $\dot{A} = (DL_A)A \Rightarrow gy$ depends on *L*.
- ► Linearity → stable endogenous growth.

… *The 'trick' of EGT*:

o if *A*˙ is linear in *A*, it means that the other factors that multiply *A* in the knowledge-production function affect the rate of growth of technology (so they will affect growth).

$$
\circ \dot{A} = f(x)A \Rightarrow \frac{\dot{A}}{A} = f(x)
$$

The Romer model *(a simplified version)*

- o Output produced from intermediate inputs.
- o Technical progress = increasing variety of intermediate inputs.
- o Innovation arises from *R*&*D* investment by private actors.
- o Market power: inventor has permanent patent rights.

Assumptions about production

… Production function:

$$
Y = \left[\int_{i=0}^{A} L(i)^{\phi} di \right]^{1/\phi}, \quad 0 < \phi < 1
$$

- \blacksquare *L*(*i*) = quantity of input *i* = labor employed in producing *i*;
- \blacksquare *A* = number of different input *types* employed.

Assumptions about production

… Production function:

$$
Y = \left[\int_{i=0}^{A} L(i)^{\phi} di \right]^{1/\phi}, \quad 0 < \phi < 1
$$

 \blacksquare *L(i)* = quantity of input *i* = labor employed in producing *i*; ■ *A* = number of different input *types* employed.

… When all existing inputs are produced in equal quantities:

$$
Y = \left[A\left(\frac{L_Y}{A}\right)^{\phi}\right]^{1/\phi} = A^{\frac{1-\phi}{\phi}}L_Y
$$

 \blacksquare *L*_Y = workers in inputs production = tot. amount of inputs

Demand for inputs

- **…** Patent-holder hires workers to produce the input associated with her idea
- ▶ Inputs then sold to final output producers
- **…** Downward-sloping demand curve for input *i*:

$$
L(i) = \left[\frac{\lambda}{p(i)}\right]^{\frac{1}{1-\phi}}
$$

 $p(i)$ = price of input *i*.

… Full-employment and fixed labor force:

 $L_A(t) + L_Y(t) = \overline{L}$

… Full-employment and fixed labor force:

 $L_A(t) + L_Y(t) = \overline{L}$

… *Linear* knowledge production function

$$
\dot{A}(t) = BL_A(t)A(t), \qquad B > 0
$$

… Full-employment and fixed labor force:

 $L_A(t) + L_Y(t) = \bar{L}$

… *Linear* knowledge production function

$$
\dot{A}(t) = BL_A(t)A(t), \qquad B > 0
$$

… Euler equation (from log utility & budget constraint):

$$
g_C = \dot{C}(t)/C(t) = r(t) - \rho
$$

… Full-employment and fixed labor force:

 $L_A(t) + L_Y(t) = \bar{L}$

… *Linear* knowledge production function

$$
\dot{A}(t) = BL_A(t)A(t), \qquad B > 0
$$

… Euler equation (from log utility & budget constraint):

$$
g_C = \dot{C}(t)/C(t) = r(t) - \rho
$$

… Free-entry condition in the R&D sector:

$$
\int_{\tau=t}^{\infty} e^{-r(\tau-t)} \pi(i, \tau) d\tau = \frac{w(t)}{BA(t)}
$$

PV of profits from an idea $=$ production cost

The logic of the Romer model

Solving the model

$$
\blacktriangleright g_Y = \frac{1-\phi}{\phi}g_A + g_{L_Y} = \frac{1-\phi}{\phi}BL_A + g_{(\bar{L}-L_A)}.
$$

 \blacktriangleright Steady state \rightarrow constant *L*_A.

 \blacktriangleright Use R&D free-entry condition to infer L^{\star}_{A} and thus g^{\star}_{γ} .

Solving the model

$$
\blacktriangleright g_Y = \frac{1-\phi}{\phi}g_A + g_{L_Y} = \frac{1-\phi}{\phi}BL_A + g_{(\bar{L}-L_A)}.
$$

 \blacktriangleright Steady state \rightarrow constant L_A .

 \blacktriangleright Use R&D free-entry condition to infer L^{\star}_{A} and thus g^{\star}_{γ} .

… Steps:

- 1. Calculate $\pi(t)$ and $g_{\pi} = g_{\pi}(g_W)$
- 2. Figure out *r* and *gW*
- 3. Calculate PV of profits from a new idea $R(t)$ using $R(t) = \frac{\pi(t)}{r g_n}$
- 4. Set PV of profits from idea = production cost, to obtain L_A^* & g_Y^* .

Step 1: find $\pi(t)$ and q_{π}

… Monopolist patent-holder sets

$$
p(i,t)=\frac{\eta}{\eta-1}w(t)
$$

Example 12 From demand curve we have:

$$
\eta = -\frac{\partial L(i)}{\partial p(i)} \frac{p(i)}{L(i)} = \frac{1}{\phi - 1} \rightarrow p(i, t) = \frac{w(t)}{\phi}
$$

… Profits at each point in time:

$$
\pi(t) = \frac{\bar{L} - L_A}{A(t)} \left[\frac{w(t)}{\phi} - w(t) \right] = \frac{1 - \phi}{\phi} \frac{\bar{L} - L_A}{A(t)} w(t)
$$

… Growth rate of profits:

$$
g_{\pi}=g_W-g_A
$$

Step 2: find *r* and *gW*

… All output is consumed and we are assuming constant *LA*, so

$$
g_C = g_Y = \frac{1-\phi}{\phi} BL_A
$$

 \blacktriangleright Having g_C , we can derive interest rate $r(t)$ from Euler equation:

$$
r(t) = \rho + \frac{\dot{C}(t)}{C(t)} = \rho + \frac{1-\phi}{\phi} BL_A
$$

… Constant monopoly mark-up implies constant wage share, so

$$
g_W = g_Y = \frac{1-\phi}{\phi} BL_A \quad \rightarrow \quad g_\pi = g_W - g_A = \frac{1-\phi}{\phi} BL_A - BL_A
$$

Step 3 - Figure out the PV of profits from a new idea

… PV of profits from a new idea:

$$
R(t) = \frac{\pi(t)}{r - g_{\pi}}
$$

… From previous steps:

$$
\pi(t) = \frac{1-\phi}{\phi}\frac{\bar{L}-L_A}{A(t)}w(t); \quad r = \rho + \frac{1-\phi}{\phi}BL_A; \quad g_{\pi} = \frac{1-\phi}{\phi}BL_A - BL
$$

… Plugging-in:

$$
R(t) = \frac{\pi(t)}{r - g_{\pi}} = \frac{\frac{1 - \phi}{\phi} \frac{\bar{L} - L_A}{A(t)} w(t)}{\rho + BL_A} = \frac{1 - \phi}{\phi} \frac{\bar{L} - L_A}{\rho + BL_A} \frac{w(t)}{A(t)}
$$

Step 4 - Set $R(t)$ = production cost and infer L_A^*

$$
\frac{1-\phi}{\phi}\frac{\bar{L}-L_A}{\rho+BL_A}\frac{w(t)}{A(t)}=\frac{w(t)}{BA(t)}\rightarrow L_A^*=(1-\phi)\bar{L}-\frac{\phi\rho}{B}
$$

Step 4 - Set $R(t)$ = production cost and infer L_A^*

$$
\frac{1-\phi}{\phi} \frac{\bar{L}-L_A}{\rho + BL_A} \frac{w(t)}{A(t)} = \frac{w(t)}{BA(t)} \rightarrow L_A^* = (1-\phi)\bar{L} - \frac{\phi \rho}{B}
$$

$$
\downarrow \downarrow
$$

$$
L_A^* = \max\{(1-\phi)\bar{L} - \frac{\phi \rho}{B}, 0\}
$$

$$
g_{\gamma}^* = \max\{\frac{(1-\phi)^2}{\phi}B\bar{L} - (1-\phi)\rho, 0\}
$$

(note: economy always on equilibrium path–no transition dynamics)

$$
U = \int_{t=0}^{\infty} e^{-\rho t} \ln C(t) dt \quad \Rightarrow \quad U = \int_{t=0}^{\infty} e^{-\rho t} \ln \left[C(0) e^{g_c} \right] dt
$$

$$
U = \int_{t=0}^{\infty} e^{-\rho t} \ln C(t) dt \quad \Rightarrow \quad U = \int_{t=0}^{\infty} e^{-\rho t} \ln \left[C(0) e^{g_c} \right] dt
$$

$$
C(t) = Y(t)/\bar{L}; \qquad C(0) = \frac{\bar{L}-L_A}{\bar{L}}A(0)^{\frac{1-\phi}{\phi}}; \qquad g_c = g_y = \frac{1-\phi}{\phi}BL_A
$$

$$
U = \int_{t=0}^{\infty} e^{-\rho t} \ln C(t) dt \quad \Rightarrow \quad U = \int_{t=0}^{\infty} e^{-\rho t} \ln \left[C(0) e^{g_c} \right] dt
$$

$$
C(t) = Y(t)/\bar{L}; \qquad C(0) = \frac{\bar{L}-L_A}{\bar{L}}A(0)^{\frac{1-\phi}{\phi}}; \qquad g_c = g_y = \frac{1-\phi}{\phi}BL_A
$$

$$
U=\int_{t=0}^{\infty}e^{-\rho t}ln\left[\frac{\bar{L}-L_{A}}{\bar{L}}A(0)^{\frac{1-\phi}{\phi}}e^{(\frac{1-\phi}{\phi})BL_{A}}\right]dt
$$

$$
U = \int_{t=0}^{\infty} e^{-\rho t} \ln C(t) dt \quad \Rightarrow \quad U = \int_{t=0}^{\infty} e^{-\rho t} \ln \left[C(0) e^{g_c} \right] dt
$$

$$
C(t) = Y(t)/\bar{L}; \qquad C(0) = \frac{\bar{L}-L_A}{\bar{L}}A(0)^{\frac{1-\phi}{\phi}}; \qquad g_c = g_y = \frac{1-\phi}{\phi}BL_A
$$

$$
U=\int_{t=0}^{\infty}e^{-\rho t}ln\left[\frac{\bar{L}-L_{A}}{\bar{L}}A(0)^{\frac{1-\phi}{\phi}}e^{(\frac{1-\phi}{\phi})BL_{A}}\right]dt
$$

$$
U = \frac{1}{\rho} \left(ln \frac{\bar{L}-L_A}{\bar{L}} + \frac{1-\phi}{\phi} ln A(0) + \frac{1-\phi}{\phi} \frac{BL_A}{\rho} \right)
$$

2. *Maximize PV lifetime utility w.r.t. LA*

$$
\max_{L_A} U = \frac{1}{\rho} \left(ln \frac{\bar{L} - L_A}{\bar{L}} + \frac{1 - \phi}{\phi} ln A(0) + \frac{1 - \phi}{\phi} \frac{BL_A}{\rho} \right)
$$

$$
L_A^{OPT} = \max \{ \bar{L} - \frac{\phi}{1 - \phi} \frac{\rho}{B}, 0 \}
$$

3. *Compare LOPT ^A with L? A*

$$
L_A^* = (1 - \phi)L_A^{OPT}
$$

Takeaways:

 \blacktriangleright Too little R&D ($L_A^* < L_A^{OPT}$);

 \triangleright more market power for innovators (lower input substitutability ϕ) would increase welfare.

Extensions

- **…** Introducing fixed capital *K*
	- o *K* produces *Y* but not *A*˙ –> *s* has level effect [Romer 1990]
	- o but if *K* produces *A*˙ , *s* can have growth effects.
- **…** Decreasing returns to *A* in the production of *A*˙
	- o –> semi-endogenous growth [Jones 1995]
	- o long-run growth depends only on *n*, while forces affecting *LA* have only level effects.
- **…** Quality-ladder models
	- o innovation = improvement of existing inputs [Grossman $\&$ Helpman 1991; Aghion & Howitt 1992]
	- o Similar conclusions.

▶ Solow predicts too much convergence...

...but Romer predicts too much *divergence!*

▶ Solow predicts too much convergence...

...but Romer predicts too much *divergence!*

… EGT ignores technological imitation across countries

- ▶ Solow predicts too much convergence...
	- ...but Romer predicts too much *divergence!*
- **…** EGT ignores technological imitation across countries
- ► *L*_A & *L*^{i} increasing in most countries, but no 'exploding' growth

- ▶ Solow predicts too much convergence...
	- ...but Romer predicts too much *divergence!*
- **…** EGT ignores technological imitation across countries
- ► *L*_A & *L*^{\overline{L} increasing in most countries, but no 'exploding' growth}
- **…** P.Krugman: *"too much of [EGT] involves making assumptions about how unmeasurable things affect other unmeasurable things."*
- **…** BUT: EGT might explain growth at a worldwide scale in the very long-run.

GDP per capita & population in US + Europe

(from Paul Romer "The deep structure of economic growth")