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e How to estimate DiD with staggered treatment?

o Recent literature shows that conventional TWFE
implementations can be severely biased.

e A new regression-based framework: LP-DiD.
Local projections (Jorda 2005) + clean controls (CDLZ 2019).
Can yield convex VWATT or equally-weighted ATT.

o
o Allows for covariates and non-absorbing treatment
o lpdid STATA command (Busch and Girardi 2023)

o



e How to estimate DiD with staggered treatment?

o Recent literature shows that conventional TWFE
implementations can be severely biased.

e A new regression-based framework: LP-DiD.
Local projections (Jorda 2005) + clean controls (CDLZ 2019).
Can yield convex VWATT or equally-weighted ATT.

o
o Allows for covariates and non-absorbing treatment
o lpdid STATA command (Busch and Girardi 2023)

o

e Montecarlo simulation to assess its performance.

e Empirical applications:
o Effect of banking deregulation on the wage share.

o Democracy & growth



Why do we need yet another DiD estimator?

Advantages of LP-DiD:
e Simple and fast to implement.
e Transparent in defining treated and control units.

e Flexible: easily accommodates different settings, weighting
schemes, and target estimands.

e General: encompasses other recent DiD estimators as
specific sub-cases.
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Background

The conventional (until recently) DiD estimator: TWFE

Static TWFE

Yie = @ + 0t + 5TWFEDit + €t

Event-study (distributed lags) TWFE

H
Yie = aj + 0¢ + Z BIWFED, b+ €
h—Q

OK in the 2x2 setting.

Biased even under parallel trends with staggered treatment, if
treatment effects are dynamic and heterogeneous.



The problems with TWFE in the staggered setting

e TWFE as weighted-average of 2x2 comparisons (Goodman-Bacon 2021)

1. Newly treated vs Never treated;

2. Newly treated vs Not-yet treated;

3. Newly treated vs Earlier treated.
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Background

The problems with TWFE in the staggered setting

e TWEFE as weighted-average of 2x2 comparisons (Goodman-Bacon 2021)

1. Newly treated vs Never treated;
2. Newly treated vs Not-yet treated;
3. Newly treated vs Earlier treated.

e Bias formula for TWFE (Goodman-Bacon 2021)

plimy_yoo BTWFE = VWATT—AATT

e TWFE as a weighted-average of cell-specific AT Ts (de Chaisemartin &
D’Haultfoeuille 2020)

, N
E[™E] 6| Y T weibe
(8,):Dg=1

o Weights can be negative (bad!)



LP-DiD: baseline version

A LP-DiD Estimator

Baseline version

Setting & Assumptions:

e Binary absorbing treatment.

e Staggered adoption.

e Treatment effects can be dynamic & heterogeneous.
e No anticipation.

Parallel trends.



LP-DiD: baseline versions

A LP-DiD estimator

Baseline version

Estimating equation:

Vitsh — Yit—1 = B,fP*D’IDAD,-t } differenced treatment indicator
+ of } time effects
—Q—e,-’;; forh=0,...,H.

restricting the estimation sample to observations that are either

{ newly treated AD; =1,

or clean control Djtin=0



LP-DiD: baseline versions

A LP-DiD estimator

Baseline version

Estimating equation:

Vitsh — Yit—1 = B,fP*D’IDAD,-t } differenced treatment indicator
+ of } time effects
—Q—e,-’;; forh=0,...,H.

restricting the estimation sample to observations that are either

newly treated ADy =1,

or clean control Djtin=0

Estimates are obtained from a set of ‘clean’ comparisons between newly
treated units and not-yet treated ones — no negative weighting



LP-DiD Estimator

What does LP-DiD identify?

e OLS estimation of the LP-DiD specification yields a
variance-weighted average effect:

ALP—DiD LP—DiD
EBy77) =) wen  1a(h)
g70
o 7g(h) = h-periods forward ATT for treatment-cohort g.

e No negative weights.



LP-DiD Estimator

What does LP-DiD identify?

e OLS estimation of the LP-DiD specification yields a
variance-weighted average effect:

ALP—DiD LP—DiD
EBy77) =) wen  1a(h)
g70
o 7g(h) = h-periods forward ATT for treatment-cohort g.

e No negative weights.

e Weights depend on & treatment variance:
_ LP—DIiD _ [ngn(L — ngn)]
h - )
g 2gz0 Nees, u[ngn(1 — ngn)]
o = size of subsample including cohort g & its clean controls.

0 [ngn(1 — ngn)] = treatment variance in that subsample.



LP-DiD as a ‘swiss knife’

Alternative weighting schemes

e Variance-weighting gives more weight
\ to more precisely estimated
X \ cohort-specific effects

e But you can apply any desired weights
through weighted regression.

e For the equally-weighted ATT:

o weighted regression
with weights = (w/ PP /Ng) ™

0 can get the same using regression
adjustment.

10



LP-DiD as a ‘swiss knife’

LP-DiD encompasses other recent DiD estimators

e Baseline OLS LP-DiD
<> stacked estimator (CDLZ, 2019)

\ \\ o But no need to stack the datal

L e Reweighted LP-DiD for equal weights
' )
U <+ CS estimator

i e Reweighted PMD LP-DiD

~ BJS estimator.
o PMD means using
1 ~t-1
Yit+h — % Dr—t_k Yi,r as outcome

11



LP-DiD as a ‘swiss knife’

Extended settings

e Covariates

e Non-absorbing treatment

) e In future work, can be extended
to continuous treatment

12



Extensions

LP-DiD with covariates

e Parallel trends conditional on x.

e A Regression Adjustment LP-DiD specification controlling
for x yields the (equally-weighted) ATT.

e Example of STATA implementation:
teffects ra (Dhy i.time x1 x2) (dtreat)

if D.treat==1 | Fh.treat==0, atet vce(cluster unit)

o If effects are independent of covariates, adding covariates
directly to an OLS LP-DiD specification yields convex
VWATT with same weights as in baseline.

13



Extensions

LP-DiD with non-absorbing treatment

e Tackled by adapting the clean control condition.
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Extensions

LP-DiD with non-absorbing treatment

e Tackled by adapting the clean control condition.

{ treatment (Djyj=1for 0<j<h)and (D, j=0forj>1),

or clean control Di+—j=0forj>—h.
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Extensions

LP-DiD with non-absorbing treatment

e Tackled by adapting the clean control condition.

°
treatment (Dj¢yj=1for0<j < h)and (Dj,j=0forj>1),
or clean control Dj:i_j=0for j > —h.

e Average effect of a treatment event:

o Assume treatment effects stabilize after L periods. Then use:

treatment (ADiy=1) & (ADj;—j=0for —h<j<L;j#0)
clean control ADjy j=0for —h<j<L

14



Simulation Evidence

Simulation

e Calibrated on empirical application: banking deregulation
(treatment) and wage share (outcome) in US states

e Simulate wage share data () for 46 states over 26 years.
o DGP: yi(0) = \ivyeeir, with e = (1 — p)eir + peie—1

0 Ai,7t, €ir ~ Beta, parameters estimated from wage share data.
e Same treatment rollout as banking deregulation laws.

e TE grows in time for 4 years, is stronger for early adopters.

e Given multiplicative DGP, we estimate a log specification.

15



True effect path and estimates from 200 replications

Treatment Effect

Dynamic TWFE * Callaway-SantAnna = —. 1 cun-Abraham N ° Borusyak-Jaravel-Spiess— —
-8 -8 -8
5 o 5 5 0 5 5 o 5 5 o 5
Event Time
Full range of true treatment effects True equally-weighted ATE
— Average estimate — - 5th and 95th pct of estimate

LP-DiD performs well and similarly to other recent estimators;
Variance-weighted LP-DiD has the lowest RMSE of all estimators at
time horizons where treatment effect heterogeneity is less large. 26



Density

Distribution of estimates from 200 replications.
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Simulation Evidence

Computational speed

Estimating the treatment effect path in a single repetition of the

simulation (seconds):

Panel size Dynamic LP- PMD Rw Rw CS SA BJS
TWFE DiD LP- LP- PMD
DiD DiD LP-
DiD
N=46; T=27; 13 events 24 12 .13 .20 .19 4.46 1.09 .24
.16 .19 .26 .29 137.5  105.5 .54

N=184; T=54; 26 events .22
Notes: Computation times in a single repetition of the simulated datasets described in Section 5, measured
in seconds. Recorded on a laptop with M2 Apple Chip processor and 8 GB of RAM, using the STATA
software. Rw = reweighted (see Sec 3.3); PMD = pre-mean-differenced (see Sec 3.4); CS = Callaway and

Sant’Anna, 2020; SA = Sun and Abraham, 2020; BJS = Borusyak, Jaravel, and Spiess (2024).

(using a laptop with 2.80 GHz Quad-core Intel i7 Processor and 16 GB of

Ram)
18



Empirical Application

Banking Deregulation and the Labor Share

1970-1996: US states deregulate
banking in a staggered fashion. .

— Inter-state banking
hi

o Inter-state banking

deregulation

Share of states with policy

o Intra-state branching

1970 1975 1980 1985 1990 1995
Year

deregulation

e Leblebicioglu & Weinberger (EJ, 2020) use static &
event-study TWFE to estimate effects on the labor share.

19



Empirical Application

TWEFE estimates Static TWFE
27, Inter-state banking < Intra-state branching
. . o .01
o Negative effect of inter-state bank H l L % %
. Lo
deregulation (=~ —1pp). 2 | ! I % !
-01
o No effect of intra-state branching " % % %
. ’ only FEs FEs FEs FEs
deregulation. +both eaments + thrplcies et polcis

Labor share

_Z T -

Event-study TWFE

Inter-state Banking Intra-state Branching

it

-4 4
* Only FEs
-6 -6 ° FEs + both treatments
= FEs + other policies
8 8 * FEs + other policies + economy
9-8-7-6-5-4-3-2-101234567389 9-87-6-5-4-32-101234567389

Years after Banking Reform 20



Empirical Applications (1)

Forbidden comparisons in the TWFE specification

e TWEFE uses ‘forbidden’ comparisons: earlier liberalizers are controls
for later liberalizers.

e Goodman-Bacon (2021) decomposition to quantify their influence.

e Contribution of unclean comparisons to TWFE estimates:

o 36% for inter-state banking deregulation;

o 70% for intra-state branching deregulation.

21



Empirical Application

Goodman-Bacon (2021) decomposition diagnostic for the
static TWFE estimate

Inter-state banking Intra-state branching

2x2 Estimate

0.04 0.00 0.02 0.04 0.06 0.08
Weight

+ Later Group Treatment vs. Earlier Group Control

0.00 0.01 0.02 0.03

* Earlier Group Treatment vs. Later Group Control
O Treatment vs. Already Treated
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Empirical Application

Effect of banking deregulation on the labor share:
LP-DiD estimates

(a) Inter-state banking deregulation (b) Intra-state branching deregulation

e, i ~WW“WWWWMM

Labor Share

-02

-03

Labor Share
———

7 6 5 4 3 2 0 1 2 3 4 5 6 7 8 9
Years after Interstate Banking Deregulation

e Same conclusion re: inter-state banking deregulation

e But dramatically different re: intra-state branching deregulation,
where unclean comparisons had large influence in TWFE.

e Also intra-state branching deregulation reduces the labor share!
23



Ipdid STATA command (Busch and Girardi, 2023)

ssc install 1lpdid, replace

. use http://fmuww.bc.edu/repec/bocode/1/ pdidtestdatal. dta

. pdid Y, time(time) unit(unit) treat(treat) pre(5) post(10)
lpdid Y, unit(unit) time(time) treat(treat) pre_window(5) post_window(10)

LP-DiD Event Study Estimates

E-time | Coeffic~t SE t P>[t] [95% co~. intervall obs
pres | -.0425659  .9483544 -.04 9642 -1.902432  1.817301 40662
pred | .6403343  .9588844 .67 5043 -1.240183  2.520852 42662
pre3 | 1.079831  .8967272 1.2 .2287 -.6787866  2.838449 44662
pre2 1.45865 8264465 1.76 L0777 -.1621368  3.079437 46662
pre1 ] . . . . i .
tauo | 3.640153  .7948942 4.58 ©  2.081246 5.199061 48662
taul 7.11248  .9093428 7.82 0 5.329121 8.895838 46662
tau2 | 9.749811  .9573893 10.18 o 7.872225  11.6274 44662
tau3 | 14.68331  .9699534 15.14 0 12.78109  16.58554 42662
taus | 19.87852 1.013118 19.62 6 17.89164  21.8654 40662
taus | 28.50038  1.014339 28.1 ®  26.51111  30.48965 38662
taus 34.7144  1.021342 33.99 o 32,7114 36.71741 36662
tau7 | 42.87508  1.034415 41.45 0 40.84643  44.90372 34662
taus | 53.21209  1.094259 48.63 o 51.06608 55.35309 32662
taus | 62.63418  1.108112 56.52 6 60.46101  64.80736 30662

taulo | 72.63583 1.193887 60.84 o 70.29444 74.97723 28709
LP-DiD Pooled Estimates

Coefficnt sE t P>[t| [95% co~. intervall obs

Pre | .7840624 .7374264 1.06 .2878 -.6621424  2.230267 40662

Post | 31.79438  .7559724 42.06 0 30.3118  33.276% 28709

For “manual” implementation of LP-DiD (which is quite easy), see
example codes at https://github.com/danielegirardi/lpdid

24


https://github.com/danielegirardi/lpdid

Conclusions

Khoa Vu
@KhoaVuUmn

Always has been.

@ Arin Dube @arindube - May 1
Difference-in-differences working paper alert

Our Local-Projections DiD offers a unified approach that encompasses many
popular alternatives as specific instances; allows for extensions; and does it all

using an OLS regression.

nber.org/papers/w31184

| &
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Additional Slides
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Identification Assumptions (baseline specification)

No anticipation
E [yi(p) — y(0)] = 0, for all p and t such that t < p.

Units do not respond in anticipation of a future treatment.

Parallel trends

E [yix(0) — yin(0)|pi = p] = E [yi(0) — yin(0)],
forall t € {2,..., T} and for all p € {1, ..., T, o0}.

Average trends in untreated potential outcomes do not
depend on treatment status.

27



Reweighted LP-DiD

Obtaining an equally-weighted ATT

LP—DiD
g:h
cohort size & treatment variance.

e Baseline weights w depend on

e But you can apply any desired weights
using weighted regression.

Wi e Equally-weighted ATE: Reweight by

1/(wgtp P/ Ne).

LP—DiD
gh .
‘residualized’ treatment indicator AD.

o w easy to compute from

e Can also use regression adjustment.

28



Empirical Applications (2)

Application: Democracy and economic growth

Acemoglu, Naidu, Restrepo and Robinson (2019).

1960-2010 panel on 175 countries & binary measure of democracy.

Potential for negative weights.

Non-absorbing treatment.

Selection based on pre-treatment GDP dynamics.

29



Empirical Applications (2)

Application: Democracy and economic growth

Acemoglu, Naidu, Restrepo and Robinson (2019).

1960-2010 panel on 175 countries & binary measure of democracy.

Potential for negative weights.

Non-absorbing treatment.

Selection based on pre-treatment GDP dynamics.
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Empirical Applications (2)

Effect of democracy on growth: dynamic panel estimates

e Dynamic fixed effects specification:

P
Ve S BDct + Z'yj}/c,tfj + o+ 51’ + €ct
j=1
. . B
e Long-run effect: = i 21pp (s.e. Tpp)

IRF from the dynamic
panel estimates

Change in GDP per capita log points

0 5 10 15 20 25 30
Years around democratization
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Empirical Applications (2)

Effect of democracy on growth: LP-DiD specification

P
Yetrh — Ye,t—1 = B;EP PPAD + 5? + Z'thycytfj + Egt :
j=1

restricting the estimation sample to:

democratizations Di=1,D;yj=0for1<;<L
clean controls Dit—j=0for0<j<L.
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Empirical Applications (2)

Effect of democracy on growth: LP-DiD specification

P
Yetrh — Ye,t—1 = B;EP PPAD + 5? + Z'thycytfj + Egt :
j=1

restricting the estimation sample to:

democratizations Di=1,D;yj=0for1<;<L
clean controls Dit—j=0for0<j<L.

o We set L=20 years.

e Acemoglu et al. LP analysis: a version of this, but (implicitly) L=1.

31



Empirical Applications (2)

GDP per capita (log points)

Effect of democracy on growth: LP-DiD estimates

60 60
ANRR (2019) LP specification LP-DiD Estimate (CCC 1)
40

20

-20 -20
-40 -40
20 10 0 10 20 30 -20 10 0 10 20 30
60
LP-DiD Estimate (CCC 2) Reweighted LP-DiD Estimate
40

20 -20

-40 -40

-20 -10 0 10 20 30 -20 -10 0 10 20 30
Years since democratization

== Estimate 95% confidence interval
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Al - Other new DiD estimators
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Alternative estimators: de Chaisemartin & D’Haultfoeiulle

de Chaisemartin & D'Haultfoeiulle estimator

e For a given time-horizon /, it estimates the average effect of having
switched in or out of treatment ¢ periods ago.

e A weighted average, across time periods t and possible values of
treatment d, of 2x2 DiD estimators.

e The constituent 2x2 DiDs compare the t — ¢ — 1 to t outcome
change, in groups with a treatment equal to d at the start of the
panel and whose treatment changed for the first time in t — ¢ (the
first-time switchers) and in control groups with a treatment equal to
d from period 1 to t (not-yet switchers).

34



Alternative estimators: Callaway-Sant’Anna

Callaway-Sant'Anna estimator

e Estimates each group specific effect at the selected time horizon.

e Take long-differences in the outcome variable, and compare each
treatment group g with its control group.

e To control for covariates, re-weight observations based on outcome
regression (OR), inverse-probability weighting (IPW) or
doubly-robust (DR) estimation.

e Aggregate group-time effects into a single overall ATT using some
weights.
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Alternative estimators: Sun-Abraham

Sun-Abraham interaction-weighted estimator

e Event-study DiD specification, with leads and lags of the treatment
variable.

e Includes a full set of interaction terms between relative time
indicators DY (ie, leads and lags of the treatment variable) and
treatment cohort indicators 1{ G, = g} (dummies for when a unit
switches into treatment).

e Then calculates a weighted average over cohorts g for each time
horizon, in order to obtain a standard event-study plot.

36



Alternative estimators: Borusyak-Jaravel-Spiess

Borusyak-Jaravel-Spiess imputation estimator

Estimate unit and time FEs only using untreated sample.

Take them out from Y to form counterfactual Y'.

Then for any treatment group, just compare Y and Y’ for treated

units around event time.

Average these across events to get an average effect.

37



