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Research question

How to estimate Difference-in-Differences (DiD) with multiple
treatment cohorts?

• Recent literature shows that conventional TWFE implementations

can be severely biased.

• A new regression-based framework: LP-DiD.

o Local projections (Jordà 2005) + clean controls (Cengiz et al 2019).

• Montecarlo simulation to assess its performance.

• Empirical applications:

o The effect of banking deregulation on the wage share.

o Democracy & growth

1



Research question

Why do we need yet another DiD estimator?

Advantages of LP-DiD:

• Simpler, faster and more transparent than other recent DiD

estimators.

• Flexible: can easily accommodate different settings, weighting

schemes, and target estimands.

• General: encompasses other DiD estimators as specific sub-cases.

• Allows controlling for pre-treatment values of the outcome and of

other time-varying covariates.
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Background

Difference-in-Differences (DiD)
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(Visual examples from Goodman-Bacon, 2021)
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Background

The conventional (until recently) DiD estimator: TWFE

• Static TWFE

yit = αi + δt + βTWFEDit + ϵit

• Event-study (distributed lags) TWFE

yit = αi + δt +
H∑

h=−Q

βTWFE
h Dit−h + ϵit

• OK in the 2x2 setting.

• Biased even under parallel trends with staggered treatment, if

treatment effects are dynamic and heterogeneous.
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Background

The problems with TWFE in the staggered setting

• TWFE as weighted-average of 2x2 comparisons (Goodman-Bacon 2021)

1. Newly treated vs Never treated;

2. Newly treated vs Not-yet treated;

3. Newly treated vs Earlier treated.
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Background

The problems with TWFE in the staggered setting

• TWFE as weighted-average of 2x2 comparisons (Goodman-Bacon 2021)

1. Newly treated vs Never treated;

2. Newly treated vs Not-yet treated;

3. Newly treated vs Earlier treated.

• Bias formula for TWFE (Goodman-Bacon 2021)

p limN→∞ β̂TWFE = VWATT−∆ATT

• TWFE as a weighted-average of cell-specific ATTs (de Chaisemartin &

D’Haultfoeuille 2020)

E
[
β̂TWFE

]
= E

 ∑
(g ,t):Dgt=1

Ng ,t

N1
wg ,t∆g ,t


o Weights can be negative!
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LP-DiD: baseline version

A Local Projections Diff-in-Diff Estimator (LP-DiD)
Baseline version

Setting & Assumptions:

• Binary absorbing treatment.

• Staggered adoption.

• Treatment effects can be dynamic & heterogeneous.

• No anticipation.

• Parallel trends.
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LP-DiD: baseline versions

A Local Projections Diff-in-Diff Estimator (LP-DiD)
Baseline version

Estimating equation:

yi,t+h − yi,t−1 = βLP−DiD
h ∆Dit } treatment indicator

+ δht } time effects

+ ehit ; for h = 0, . . . ,H .

restricting the sample to observations that are either:{
newly treated

or clean control

∆Dit = 1 ,

Di,t+h = 0
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LP-DiD Estimator

What does LP-DiD identify?

• A variance-weighted average effect:

E (β̂LP−DiD
h ) =

∑
g ̸=0

ωLP−DiD
g ,h τg (h)

o τg (h) = h-periods forward ATT for treatment-cohort g .

• No negative weights.

• Weights depend on subsample size & treatment variance:

ωLP−DiD
g ,h =

NCCSg,h
[ngh(nc,g ,h)]∑

g ̸=0 NCCSg,h
[ng ,h(nc,g ,h)]

,

o NCCSg,h = size of subsample including group g & its clean controls.

o [ngh(nc,g,h)] = treatment variance in that subsample.
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LP-DiD as a ‘swiss knife’

Flexibility in choosing a weighting scheme

• Can apply any desired weights through

weighted regression.

• Equally-weighted ATT:

o weighted regression with weights

= 1/(ωLP−DiD
g ,h /Ng )

o can also use regression

adjustment.
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LP-DiD as a ‘swiss knife’

LP-DiD encompasses other DiD estimators

• Baseline ↔ stacked estimator (CDLZ,

2019)

• But no need to stack the data!

• Baseline + reweighting ↔ CS

estimator.

• Baseline + reweighting + alternative

base period ≈ BJS estimator.

o LHS: yi,t+h − 1
k

∑t−1
τ=t−k yi,τ
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LP-DiD as a ‘swiss knife’

Easy to adapt to different settings

• Covariates & outcome lags

• Non-absorbing treatment

• Continuous treatment variable
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Extensions

LP-DiD with covariates and outcome lags

Estimating equation:

yi,t+h − yi,t−1 = βLP−DiD
h ∆Dit } treatment indicator

+
∑P

p=1 γ
h
p∆yi,t−p } outcome lags

+
∑M

m=1

∑P
p=0 γ

h
m,p∆xm,i,t−p } covariates

+ δht } time effects

+ ehit ; for h = 0, . . . ,H ,

restricting the sample to observations that are either{
newly treated

or clean control

∆Dit = 1 ,

Di,t+h = 0

• Covariates will generally alter the weights.

• Can use p-score methods to make sure weights remain non-negative,

or regression adjustment to get equally-weighted ATT.
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Extensions

LP-DiD with non-absorbing or continuous treatment

• In general: Adapt the clean control condition to the specific setting.

• Example for non-absorbing treatment:{
treatment

clean control

(∆Dit = 1) & (∆Di,t−j = 0 for − h ≤ j ≤ L; j ̸= 0)

∆Di,t−j = 0 for − h ≤ j ≤ L

• Example for continuous treatment Xit :{
movers

quasi-stayers

(|∆Xit | > c) & (|∆Xi,t−j | ≤ c for − h ≤ j ≤ L; j ̸= 0)

|∆Xi,t−j | ≤ c for − h ≤ j ≤ L

• Underlying assumption: treatment effects stabilize after L periods.
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Simulation Evidence

Simulation

• N=500; T=50.

• DGP:

Y0it = ρY0,i,t−1+λi +γt + ϵit ; −1 < ρ < 1; λi , γt , ϵit ∼ N(0, 25)

• Binary staggered treatment.

• TE grows in time for 20 periods, and is stronger for early adopters.

1 Exogenous treatment

o Units randomly assigned to 10 groups of size N/10

o One group never treated; others treated at t = 11, 13, 15 . . . , 27.

2 Endogenous treatment

o Probability of treatment depends on past outcome dynamics.

o Negative shocks increase probability of treatment.

o Parallel trends holds only conditional on outcome lag.
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Simulation 1 – exogenous treatment scenario

True effect path and estimates from 200 replications
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Simulation 1 – exogenous treatment scenario

Distribution of estimates from 200 replications.
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Simulation 2 – endogenous treatment scenario

True effect path and estimates from 200 replications
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Simulation 2 – endogenous treatment scenario

Distribution of estimates from 200 replications.
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Simulation Evidence

Computational speed

Estimating the treatment effect path in a single repetition of the

simulations (seconds):

(using a laptop with 2.80 GHz Quad-core Intel i7 Processor and 16 GB of

Ram)
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Empirical Applications (1)

Application: Banking Deregulation and the Labor Share

1970-1996: US states deregulate

banking in a staggered fashion.

o Inter-state banking

deregulation

o Intra-state branching

deregulation
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• Leblebicioglu & Weinberger (EJ, 2020) use static & event-study

TWFE to estimate effects on the labor share.

21



Empirical Applications (1)

TWFE estimates

• Negative effect of inter-state bank

deregulation (≈ −1pp).

• No effect of intra-state branching

deregulation.
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Empirical Applications (1)

Forbidden comparisons in the TWFE specification

• TWFE uses ‘forbidden’ comparisons: earlier liberalizers are controls

for later liberalizers.

• Goodman-Bacon (2021) decomposition to quantify their influence.

• Contribution of unclean comparisons to TWFE estimates:

o 36% for inter-state banking deregulation;

o 70% for intra-state branching deregulation.
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Empirical Applications (1)

Goodman-Bacon (2021) decomposition diagnostic for the
static TWFE estimate
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Empirical Applications (1)

Effect of banking deregulation on the labor share:

LP-DiD estimates

(a) Inter-state banking deregulation
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(b) Intra-state branching deregulation
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Empirical Applications (2)

Application: Democracy and economic growth

• Acemoglu, Naidu, Restrepo and Robinson (2019).

• 1960-2010 panel on 175 countries & binary measure of democracy.

• Potential for negative weights.

• Non-absorbing treatment.

• Selection based on pre-treatment GDP dynamics.

GDP per capita around

democratization
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Empirical Applications (2)

Effect of democracy on growth: dynamic panel estimates

• Dynamic fixed effects specification:

yct = βDct +

p∑
j=1

γjyc,t−j + αc + δt + ϵct ,

• Long-run effect: β̂
1−

∑p
j=1 γ̂j

= 21pp (s.e. 7pp)

IRF from the dynamic

panel estimates
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Empirical Applications (2)

Effect of democracy on growth: LP-DiD specification

yc,t+h − yc,t−1 = βLP DiD
h ∆Dct + δht +

p∑
j=1

γh
j yc,t−j + ϵhct .

restricting the estimation sample to:{
democratizations

clean controls

Dit = 1;Di,t−j = 0 for 1 ≤ j ≤ L

Di,t−j = 0 for 0 ≤ j ≤ L .

• We set L=20 years.

• Acemoglu et al. LP analysis: a version of this, but (implicitly) L=1.
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Empirical Applications (2)

Effect of democracy on growth: LP-DiD estimates

ANRR (2019) LP specification
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Conclusions
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Additional Slides
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Identification Assumptions (baseline specification)

No anticipation

E [yit(p)− yit(0)] = 0, for all p and t such that t < p.

Units do not respond in anticipation of a future treatment.

Parallel trends

E [yit(0)− yi1(0)|pi = p] = E [yit(0)− yi1(0)] ,

for all t ∈ {2, ...,T} and for all p ∈ {1, ...,T ,∞}.

Average trends in untreated potential outcomes do not
depend on treatment status.
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Reweighted LP-DiD

Obtaining an equally-weighted ATT

• Baseline weights ωLP−DiD
g ,h depend on

cohort size & treatment variance.

• But you can apply any desired weights

using weighted regression.

• Equally-weighted ATE: Reweight by

1/(ωLP−DiD
g ,h /Ng ).

• ωLP−DiD
g ,h easy to compute from

‘residualized’ treatment indicator ∆D̃.

• Can also use regression adjustment.
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A1 - Other new DiD estimators
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Alternative estimators: de Chaisemartin & D’Haultfoeiulle

de Chaisemartin & D’Haultfoeiulle estimator

• For a given time-horizon ℓ, it estimates the average effect of having

switched in or out of treatment ℓ periods ago.

• A weighted average, across time periods t and possible values of

treatment d , of 2x2 DiD estimators.

• The constituent 2x2 DiDs compare the t − ℓ− 1 to t outcome

change, in groups with a treatment equal to d at the start of the

panel and whose treatment changed for the first time in t − ℓ (the

first-time switchers) and in control groups with a treatment equal to

d from period 1 to t (not-yet switchers).
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Alternative estimators: Callaway-Sant’Anna

Callaway-Sant’Anna estimator

• Estimates each group specific effect at the selected time horizon.

• Take long-differences in the outcome variable, and compare each

treatment group g with its control group.

• To control for covariates, re-weight observations based on outcome

regression (OR), inverse-probability weighting (IPW) or

doubly-robust (DR) estimation.

• Aggregate group-time effects into a single overall ATT using some

weights.
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Alternative estimators: Sun-Abraham

Sun-Abraham interaction-weighted estimator

• Event-study DiD specification, with leads and lags of the treatment

variable.

• Includes a full set of interaction terms between relative time

indicators Dk
it (ie, leads and lags of the treatment variable) and

treatment cohort indicators 1{Gg = g} (dummies for when a unit

switches into treatment).

• Then calculates a weighted average over cohorts g for each time

horizon, in order to obtain a standard event-study plot.
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Alternative estimators: Borusyak-Jaravel-Spiess

Borusyak-Jaravel-Spiess imputation estimator

• Estimate unit and time FEs only using untreated sample.

• Take them out from Y to form counterfactual Y’.

• Then for any treatment group, just compare Y and Y ′ for treated

units around event time.

• Average these across events to get an average effect.

38


