Autonomous Demand and the Investment Share

Daniele Girardi* and Riccardo Pariboni**

* Department of Economics, University of Massachusetts Amherst ** Department of Economics, Roma Tre University.

Research Question:

How do (autonomous) demand dynamics affect the investment share of the economy?

Why should we care?

- Influence of demand on investment is a powerful potential mechanism for hysteresis/demand-led growth;
- the effect of autonomous demand on the investment share is a powerful statistic to assess different macroeconomic models (an 'identified moment' [Nakamura & Steinsson, 2018]).

Theoretical predictions (I)

- Canonical New-Keynesian 3-equations model and 'Classical-Marxian' models [Duménil and Lévy 1999]:
 - Autonomous demand increase would reduce I/Y;
 - Mechanism: demand expansion leads to accelerating inflation, CB reaction causes 'crowding-out'

Theoretical predictions (I)

- Canonical New-Keynesian 3-equations model and 'Classical-Marxian' models [Duménil and Lévy 1999]:
 - Autonomous demand increase would reduce I/Y;
 - Mechanism: demand expansion leads to accelerating inflation, CB reaction causes 'crowding-out'
- Neo-Kaleckian model:
 - Baseline version: no autonomous demand, *I*/*Y* is supply-determined (*I*/*Y* = s × Π)
 - Augmented with autonomous demand: negative effect of autonomous demand growth on *I*/*Y*.
 - Mechanism: higher demand growth accommodated by permanently higher utilization rate, so investment growth does not catch up.

Theoretical predictions (II)

- 'Supermultiplier' models
 - Increase in autonomous demand growth increases the investment share
 - Mechanism: after initial over-utilization, *I* will grow faster than *Y* for some time, in order to restore *u* = *u_n*

Theoretical predictions (II)

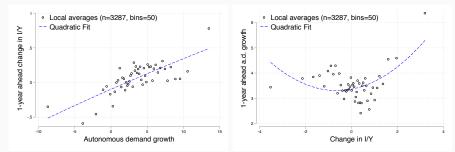
- 'Supermultiplier' models
 - Increase in autonomous demand growth increases the investment share
 - Mechanism: after initial over-utilization, *I* will grow faster than *Y* for some time, in order to restore *u* = *u_n*
- Harrodian models (á la Peter Skott) :
 - Baseline version: positive *correlation* between demand growth and investment share, but *no causal effect*: both driven by (exogenous) changes in Π.
 - Kaldor-Marshall version (endogenous distribution): positive effect of autonomous demand on the investment share.
 - Mechanism: demand expansion \rightarrow higher $\Pi \rightarrow$ higher I/Y.

Theoretical predictions: summing up

- New-Keynesian, Classical-Marxian and Neo-Kaleckian models: negative effect of ΔZ on I/Y;
- Supermultiplier model and Harrodian model w/ endogenous distribution: positive effect of ΔZ on I/Y;
- Effect is direct in supermultiplier models; mediated by profit share in Harrod-Kaldor-Marshall model;
- We estimate empirically the effect of ΔZ on I/Y to see which model gets it right.

Sample and data

- Quarterly and yearly panel, 20 OECD economies, 1960-2016;
- Outcome variable: private non-housing investment (% of GDP);
- Main explanatory variable: autonomous demand growth
 - Autonomous demand = public consumption and investment + exports + housing investment.
- Control variables: real interest rate and profit share.
- Data sources: OECD Economic Outlook, AMECO, Eurostat.


Identification issues

- Challenge: exports, public spending and housing are partly endogenous (Girardi and Pariboni, 2015 and 2016).
- Reverse causality: business investment may affect autonomous demand directly and through its impact on aggregate income.
- Unobserved shocks to economic activity (supply-side factors, global macroeconomic factors) can affect simultaneously business investment, GDP and autonomous demand.
- We use a combination of panel data techniques and instrumental variables to tackle endogeneity.

Research design

- 1. Estimate dynamic panel models
 - test if past ΔZ predicts subsequent values of I/Y;
- 2. Use an instrumental-variables strategy to estimate a causal effect
 - we propose 3 instruments for autonomous demand;
- 3. Figure out which model gets this relation right
 - spoiler: evidence is most consistent with 'supermultiplier' models;

Descriptive evidence

Figure 1: Relation between autonomous demand and business investment share (quarterly panel, 1960-2016)

Dynamic panel estimation

$$I/Y_{i,t} = \alpha_i + \delta_t + \sum_{j=1}^p \beta_j \Delta Z_{i,t-j} + \sum_{j=1}^p \gamma_j (I/Y)_{i,t-j} + \epsilon_{i,t}$$

- quarterly data;
- test whether past values of ΔZ predict future values of I/Y;
- control for lags of I/Y and time & country FE;
- robustness analysis also controls for r and Π .

Dynamic panel estimation - results

- changes in ΔZ predict subsequent changes of the same sign in I/Y;
- estimates imply that in the long-run a permanent 1% increase in autonomous demand growth raises the investment share by more than 1 point of GDP (point estimates between 1.4 and 2.2);
- robust to country & time FEs, interest rate and profit share;
- We assess reverse-causality by testing whether I/Y predicts ΔZ and find some evidence of it (not robust).

'Disaggregated' dynamic panel tests

- Use same model to test for Granger-causality between each single component of Z and I/Y;
- For each component, we also estimate reverse Granger-causality tests;
- The estimated effect of each autonomous component is positive and of similar magnitude, but imprecisely estimated (larger standard errors);
- Reverse-causality tests reveal interesting patterns:
 - exports negatively related to past values of I/Y.
 - housing and gov't spending positively related to past values of I/Y.

Instrumental Variables analysis

- Granger-causality tests may be biased by confounding factors;
- instrumental variables to obtain exogenous variation in ΔZ and estimate a causal effect.

Instrumental Variables analysis

- Granger-causality tests may be biased by confounding factors;
- instrumental variables to obtain exogenous variation in ΔZ and estimate a causal effect.

Three instruments for autonomous demand:

- 1. jack-knifed US demand for imports, weighted by a country's exposure to trade with the US;
- an index measuring the weighted-average openness to trade of a country's main export destinations;
- 3. Military spending

Jack-knifed US import growth \times exposure to the US

- Overall changes in US import demand affect other country's exports;
- heterogeneous intensity: a given increase in US demand impacts Canada more than Japan; Japan more than the Netherlands;

Jack-knifed US import growth \times exposure to the US

- Overall changes in US import demand affect other country's exports;
- heterogeneous intensity: a given increase in US demand impacts Canada more than Japan; Japan more than the Netherlands;
- for each country *i* and year *t*, take the growth rate of US demand for imports, excluding imports from country i (to avoid endogeneity);
- multiply this variable by the *past* share of the exports of country *i* that are absorbed by the US.
- $\Delta USDemand_{i,t} = [\Delta ln(M_{US} M_{US-i}) * 100] \times (\bar{X}_{i \rightarrow US}/\bar{X}_i)_{past}$

Jack-knifed US import growth \times exposure to the US

- Overall changes in US import demand affect other country's exports;
- heterogeneous intensity: a given increase in US demand impacts Canada more than Japan; Japan more than the Netherlands;
- for each country *i* and year *t*, take the growth rate of US demand for imports, excluding imports from country i (to avoid endogeneity);
- multiply this variable by the *past* share of the exports of country *i* that are absorbed by the US.
- $\Delta USDemand_{i,t} = [\Delta ln(M_{US} M_{US-i}) * 100] \times (\bar{X}_{i \rightarrow US}/\bar{X}_i)_{past}$
- Identification assumptions: past exposure to trade with the US exogenous to future I/Y; US aggregate demand not determined by macroeconomic conditions in its trade partner countries.

Weighted average openness to trade of export destinations

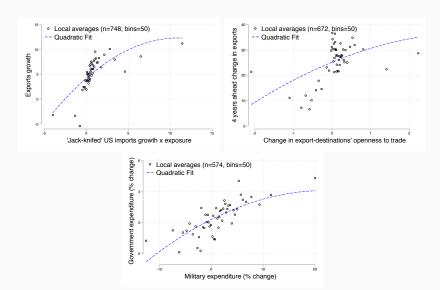
- for a country *i*, a lifting of trade restrictions in its main export destinations can give an (exogenous) boost to exports
- conversely, the erection of trade barriers in key trade partners can depress exports;

Weighted average openness to trade of export destinations

- for a country *i*, a lifting of trade restrictions in its main export destinations can give an (exogenous) boost to exports
- conversely, the erection of trade barriers in key trade partners can depress exports;
- for each country, we calculate the weighted-average openness to trade of its five main export destinations (weights = economy size);
- measure of openness: 'trade restrictions' [Dreher et al. (2008)].

Weighted average openness to trade of export destinations

- for a country *i*, a lifting of trade restrictions in its main export destinations can give an (exogenous) boost to exports
- conversely, the erection of trade barriers in key trade partners can depress exports;
- for each country, we calculate the weighted-average openness to trade of its five main export destinations (weights = economy size);
- measure of openness: 'trade restrictions' [Dreher et al. (2008)].
- Identification assumption: trade policy of other countries is exogenous to country *i*'s macroeconomic conditions;


Military spending

- A sizable component of public spending that tends to be largely independent of the business cycle;
- a large literature uses it as instrument for government spending;

Military spending

- A sizable component of public spending that tends to be largely independent of the business cycle;
- a large literature uses it as instrument for government spending;
- Identification assumptions:
 - changes in military spending exogenous to domestic macroeconomic conditions;
 - they affect the domestic economy only through their multiplier effect.

Instruments Relevance (yearly panel, 1970-2015)

2SLS estimation

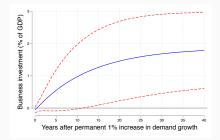
$$I/Y_{i,t} = \alpha_i + \delta_t + \sum_{j=0}^{p} \beta_j \Delta Z_{i,t-j} + \sum_{j=0}^{p} \gamma_j (I/Y)_{i,t-j} + \epsilon_{i,t}$$
(1)

2SLS estimation

$$I/Y_{i,t} = \alpha_i + \delta_t + \sum_{j=0}^{p} \beta_j \Delta Z_{i,t-j} + \sum_{j=0}^{p} \gamma_j (I/Y)_{i,t-j} + \epsilon_{i,t}$$
(1)

$$\Delta Z_{i,t} = \rho_i + \theta_t + \sum_{j=0}^{q} \phi_j \Delta USDemand_{i,t-j} + \sum_{j=0}^{q} \pi_j \Delta TP_openness_{i,t-j} + \sum_{j=0}^{q} \sigma_j \Delta Milex_{i,t-j} + \sum_{j=0}^{p} \omega_j \Delta (I/Y)_{i,t-j} + v_{i,t}$$

$2\mathsf{SLS}\ estimation$


$$I/Y_{i,t} = \alpha_i + \delta_t + \sum_{j=0}^{p} \beta_j \Delta Z_{i,t-j} + \sum_{j=0}^{p} \gamma_j (I/Y)_{i,t-j} + \epsilon_{i,t}$$
(1)

$$\Delta Z_{i,t} = \rho_i + \theta_t + \sum_{j=0}^{q} \phi_j \Delta USDemand_{i,t-j} + \sum_{j=0}^{q} \pi_j \Delta TP_openness_{i,t-j} + \sum_{j=0}^{q} \sigma_j \Delta Milex_{i,t-j} + \sum_{j=0}^{p} \omega_j \Delta (I/Y)_{i,t-j} + v_{i,t}$$

- yearly dataset (1970-2015);
- treat autonomous demand as endogenous, and instrument it using our three instruments;
- control for lags of I/Y and country and year fixed effects.
- robustness: control also for r and Π ;

2SLS Estimation - Results

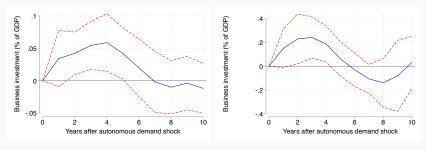
- A (significant and relevant) positive effect of ΔZ on I/Y across all specifications;
- Baseline preferred IV specification implies that a permanent 1% increase in ΔZ increases the equilibrium (I/Y) by around 1.9 percentage points of GDP.
- Impulse response function (IRF) from the preferred IV specification:

Semi-parametric estimates (Local Projections)

- IRF from IV dynamic panel (previous slide):
 - gives the dynamic effect of a *permanent* increase in ΔZ ;
 - based on extrapolating from estimated coefficients;
 - relies heavily on parametric specification of the autoregressive process followed by *I*/*Y*;
- IRF from local-projections (LPs) [Jordá , 2005]:
 - does not assume a parametric model for the dynamics of the outcome;
 - gives the dynamic effect of a *temporary* increase in ΔZ;

Semi-parametric estimates (Local Projections)

• For each time-horizon *h*, estimate the LP regression:


$$I/Y_{i,t+h} = \alpha_i^h + \delta_t^h + \beta^h \Delta Z_{i,t} + \sum_{j=0}^q \gamma_j^h (I/Y)_{i,t-j} + \epsilon_{i,t+h} \quad \text{for } h = 1, ..., n$$
(2)

Semi-parametric estimates (Local Projections)

• For each time-horizon *h*, estimate the LP regression:

$$I/Y_{i,t+h} = \alpha_i^h + \delta_t^h + \beta^h \Delta Z_{i,t} + \sum_{j=0}^q \gamma_j^h (I/Y)_{i,t-j} + \epsilon_{i,t+h} \quad \text{for } h = 1, ..., n$$
(2)

• Resulting IRF (Dynamic effect of a temporary 1% increase in ΔZ):

(c) OLS estimation

Demand shocks (increases in rate of growth of autonomous demand) tend to cause the business investment share to increase significantly

- effect of demand dynamics on capital accumulation can be a major source of hysteresis/demand-led growth;
- Not consistent with:
 - macro models in which potential output is exogenous to aggregate demand (NK 3-equations models; 'Classical-Marxian' models);
 - Neo-Kaleckian model with flexible desired utilization;
- Consistent with:
 - models in which productive capacity adjusts to demand in the long-run ('Supermultiplier' models);
 - Skott (2010) Harrod-Marshall-Kaldor model which however would predict the effect to disappear when controlling for Π.